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Abstract  —  The accuracy of numerical electromagnetic 

analysis is limited by numerous sources of error.  Dynamic 
range is a fundamental limitation due to the finite precision 
arithmetic used by computers.  This limitation, as well as 
limitations involving box resonances and subsectioning 
approaches, is explored quantitatively.  In this way, users of 
such software can gain an understanding as to the range of 
problems for which a numerical electromagnetic analysis 
can give accurate answers, and the range for which the 
results may be in question. 

I. INTRODUCTION 

Numerical electromagnetics research often devotes 
considerable effort to demonstrate the accuracy of an 
algorithm.  This paper takes the opposite approach.  We 
explore the error and failure modes seen in 
electromagnetic analysis, and further, we demonstrate 
several means to identify, characterize, and quantify 
these limitations.  When provided with this knowledge, a 
user can then proceed with increased confidence that a 
specific electromagnetic analysis will, or possibly will 
not, provide an accurate answer for a specific problem. 

Fig. 1. Baseline analysis with circuit resonance at 17.8 GHz 
is handled by the interpolation with no difficulty. 

II. INTERPOLATION FAILURE 

Interpolation of electromagnetic data has seen 
extensive research in recent years, for example, [1]-[2].  
Much of the research has been based on the use of the 
Padé polynomial, a ratio of two polynomials resembling 
the Laplace transform of a lumped circuit.  These 
algorithms are typically iterative and can occasionally 
fail.  Little has been published about these failure 
mechanisms. 

Fig. 2. Doubling the size of the box introduces a box 
resonance at 20.1 GHz. 

One type of failure occurs with box resonances.  While 
circuit resonances are well modeled by the Padé 
polynomial, box resonances generally increase the 
number of iterations required by the algorithm.  If too 
many box resonances exist in the band being analyzed, 
then excessive analysis time is required. 

To test interpolation robustness in the presence of box 
resonances, a microstrip resonator is analyzed inside a 
box (5 × 5 mm substrate, 0.5 mm thick, εr=10 with 5 mm 
air above, line width 0.6 mm, resonator length 2.8 mm, 
0.1 mm gaps, 1 mm long feed lines, cell size 0.1 × 0.1 
mm, lossless.).  The Sonnet Adaptive Band Synthesis 
(ABSTM) interpolation is used [3], however, the box 
resonance performance of any EM interpolation can be 
explored. 

Fig. 3. Doubling the box size once more introduces a forest 
of resonances above 20 GHz, making interpolation difficult. 

 
 



Figure 1 shows the baseline result.  Analysis at 10 
frequencies, indicated by data markers, is required for a 
full interpolation from 0.1 to 30 GHz.  The 18.1 GHz 
circuit resonance is no problem for the interpolation 
However, there are resonances just above 30 GHz, 
already requiring a small cluster of analysis frequencies. 

Figure 2 shows results for the substrate doubled to 10 
× 10 mm. The single box resonance at 20.1 GHz is easily 
interpolated.  However, the cluster of box resonances just 
above 30 GHz is becoming troublesome, requiring a total 
of 14 frequencies for the complete interpolation. 

20/λ 
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40/λ 80/λ Figure 3 shows the box doubled once more, to 20 × 20 
mm. Box resonances at 10.1, 15.9, and 20.0 GHz are not 
excited by this circuit.  The forest of box resonances, 
now just above 25 GHz, forces the interpolation to 26 
analysis frequencies, most of them clustered at the high 
end of the band. 

Fig. 4. Convergence analysis with respect to largest 
subsection size shows substantial sensitivity below –100 dB. 

From these results, we infer that this interpolation 
should not be used when there is a forest of box 
resonances, however a small number of box resonances 
are easily analyzed, and any box resonances not excited 
by a specific circuit can be ignored.  Exploring the limits 
of interpolation using simple circuits like this can save 
considerable wasted effort later. 

The ABS interpolation can also fail for circuits with S-
parameters below –100 dB, as discussed later.  Various 
interpolation algorithms have also been known to fail for 
circuits of high complexity, however, that failure mode 
has not been seen using this particular interpolation. 

III. DYNAMIC RANGE 

To stress dynamic range we analyze a simple band-
stop filter.  Four quarter wave stubs are attached at 
slightly more than half wave intervals.  The circuit is in a 
narrow box to minimize waveguide modes, inclusion of 
the box is a critical part of the analysis.  Using a cell size 
as small as possible maximizes stress on dynamic range.  
Dynamic range is stressed by both the small cell size (in 
terms of wavelengths) and by the large number of 
subsections (which requires a large matrix inversion).  In 
addition, the stop band is extremely narrow, maximizing 
sensitivity to numerical error, i.e., S-parameters near 0 
dB are very close in frequency to S-parameters at –100 
dB. 

All transmission lines are 0.1 mm wide, the resonators 
are 10 mm long, spaced every 10.6 mm and attached 
alternately on one side and then the other. The substrate 
is 91.8 × 0.7 mm, 0.1 mm thick, εr=10, and has 0.1 mm 
of air above.  All analyses use a square cell size.  The 
inset in Figure 4 shows one resonator, the entire filter is 
not shown due to the extreme aspect ratio (it is very 
long). 

Unless otherwise stated, the cell size is 0.0125 mm, 
allowing exactly eight cells across the width of all lines.  
This corresponds to 3200 cells per wavelength.  The cells 
are gradually merged into larger subsections on the 
interior of lines (Fig. 4), while still keeping subsections 
one cell wide on the line edges.  The largest allowed 
subsection is, by default, 1/20th of a wavelength.  

However, this is insufficient for this filter when accurate 
data is required in the band-stop region.  Figure 4 shows 
that something on the order of 80 subsections/λ 
(Analysis→Advanced Subsectioning) is required for 
convergence to within several dB in the band-stop region 
of this filter.  We use 160 subsections/λ (subsectioning 
shown in the inset of Fig. 4) for all remaining analyses. 

Figure 5 shows convergence for cell size, in terms of 
cells per line width.  Our baseline analysis assumes 8 
cells per line width; 4 and 16 cells per line width are also 
plotted.  Results below –100 dB are especially sensitive 
to cell size.  Note that even 4 cells/width is already 
extremely small in terms of wavelength.  That an even 
smaller cell size is required demonstrates that cell size 
must also be small with respect to line width in order to 
achieve accuracy [4]-[5]. 

Figure 6 shows the effect of dynamic range on the 
ABS interpolation.  Analysis at four frequencies (circle 
data markers) is required for the complete interpolation.. 
No analysis frequencies fall within the stop-band, thus 
maximizing interpolation error.  The square data markers 
show the frequency-by-frequency analysis.  Results are 
visually identical except below –100 dB where the 
maximum difference is 3 dB.  If higher accuracy is 
required below –100 dB, then interpolation should not be 
used. 
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Fig. 5. Convergence analysis for cell size also shows 
substantial sensitivity below –100 dB (note enlarged scale). 



Data in the band-stop region of Fig. 6 appears smooth.  
Enlarging that region significantly and quadrupling the 
number of data points shows there is actually about 1 dB 
of noisy ripple, Fig. 7.  To determine how much of this 
noise is due to matrix solve numerical precision, the 
analysis was repeated in single precision, also shown in 
Fig. 7.  The single precision result is almost identical to 
the double precision result, including the noise.  
Differences are on the order of 0.1 dB at –116.3 dB 
down.  This corresponds to a +/– 1.77×10-8 difference in 
magnitude, suggesting a matrix solve noise floor of about 
–155 dB. Notice that it is important to take a large 
number of data points in the stop-band as most data 
points show almost no difference between single and 
double precision.  A limited sample size would generate 
an optimistic estimate of the noise floor. 

Since solving the matrix in single or double precision 
makes almost no difference in the result, most of the 
numerical noise must come from elsewhere.  The third 
curve shows the result of approximately doubling the 
number of modes used by the FFT to calculate coupling 
between subsections (Analysis Advanced ”-c3”).  The 
average value of stop-band insertion loss has decreased 
by about one dB and the noise is about cut in half.  
Assuming the original peak numerical noise magnitude is 
about 0.5 dB peak (1.0 dB peak-to-peak, sometimes 

adding in phase, sometimes out of phase), we have a 
difference in magnitude at –115 dB of +/– 9.95×10-7 
suggesting a noise floor of –120 dB.  Keep in mind that 
this is an extreme case with likely contributing factors 
including the extremely small cell size (in terms of 
wavelength), and the extreme aspect ratio of the shielding 
box (it is very narrow). 

Square markers: 
Frequency-by-
frequency analysis 

As a rule-of-thumb we consider EM results to be 
reliable down to about 20 dB above the noise floor, or 
about –100 dB in this case.  In practice, we find noise 
floors can range from –100 dB to –180 dB depending on 
the circuit being analyzed.  Referring back to Fig. 5, note 
that in this case, error introduced by cell size overwhelms 
the numerical precision error of Fig. 7.  Even so, we are 
still able to quantify the numerical precision error and 
even identify probable sources. 

Line and round 
markers: 
Interpolation 

Fig. 6. The ABS interpolation requires analysis at only four
frequencies, but is up to 3 dB in error below –100 dB. 

III. CONFORMAL MESH 

FFT based planar EM analyses [6] require a fine 
underlying mesh in order to use the FFT and thus derive 
the accuracy and dynamic range benefits of the FFT.  To 
reduce analysis time, the small FFT cells are usually 
merged together to form larger rectangular subsections 
reducing the size of the matrix to be inverted (inset, Fig. 
4).  Although difficult, it is also possible to merge the 
FFT cells into subsections that follow curving edges [7]. 

More Modes 

Double 

To test conformal meshing, all the lines in the band-
stop filter of the previous section are curved into 
semicircles with inside radii of either 1.0 or 0.8 mm as 
appropriate, Fig. 8.  Only one resonator of the filter is 
shown due to the extreme length of the substrate.  The 
inset shows the staircasing due to the fine underlying 
FFT cells.  Conformal meshing merges these cells 
together to form curving subsections, while at the same 

Single 

Fig. 7. Single and double precision have almost the same 
numerical noise, adding more modes reduces the noise. 

Fig 8. To test conformal meshing, the band-stop filter is
meandered, one of four resonators shown. 

1% 

Fig. 9. Conformal mesh shows a 1.5% shift in center 
frequency as cell size changes, see text. 

8 cells/width 4 cells/width 



time including the high edge current that is required for 
accuracy.  

Figure 9 shows analysis for both 4 and 8 cells across 
the line width.  In contrast to the straight band-stop filter 
results, Fig. 5, the center frequency shows a shift of 
1.5%.  This appears to be due to the staircase edge (insets 
in Fig. 9).  The larger 4 cells/line width staircase slows 
wave propagation on the curved line.  Several 
frequencies were analyzed at 16 cells/line width 
indicating a resonant frequency 0.5% higher.  Thus, one 
percent bandwidth class curved resonator filter analysis 
should be performed with this potential problem in mind. 

Figure 10 shows the ABS interpolation applied to the 
meandered and conformally meshed band-stop filter.  
The interpolation requires five analysis frequencies for a 
complete interpolation. No analysis frequencies fall 
within the stop-band, thus maximizing interpolation 
error.  Interpolated data below –120 dB starts to diverge 
from the frequency-by-frequency calculation. 

While numerical precision error for this filter was not 
investigated; it appears that the noise floor is likely to be 
under -140 dB.  The better noise floor may be due to the 
relaxed box size aspect ratio (the substrate is wider). 

VI. CONCLUSION 

While most electromagnetic research involves 
demonstrating accuracy, we have taken the opposite 

approach by looking for analysis error and limitations.  
We have found, for the specific analysis investigated, 
that the interpolation approach fails when there is a 
‘forest’ of box resonances, while one or two box 
resonances is no problem.  Additionally, we have 
investigated dynamic range limitations and the effect of 
numerical precision error on interpolation by means of a 
band-stop filter.  We have found dynamic range typically 
exceeds 100 dB and the specific interpolation algorithm 
we investigated can diverge from the frequency-by-
frequency calculation for data below –100 dB. These 
tests were performed on both a straight filter using 
regular meshing and a meandered filter using the recently 
introduced conformal meshing. Quantitative information 
on limitations and analysis error is critical for efficient 
use of electromagnetic analysis tools. 

Square markers: 
Frequency-by-
frequency analysis 

Line and round 
markers: 
Interpolation 

Fig. 10. Interpolation as applied to this circuit yields good 
results down to –120 dB. 
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